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Lecture 22 — Conclusions on GPT; Audio Processing for Deep Learning
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Conclusions on GPT

GPT-3 (2020)

O

O

O

175B parameters,
96 layers

96 masked-attention heads in each layer; used a more efficient
alternation of dense and sparse attention patterns

Input width: 2048 tokens
Used softmax/temperature and Top-p sampling

Training for GPT-3 was a scaled-up version of GPT-2, including a
larger text corpus:

« Common Crawl of Web
« Entire English Wikipedia
«  WebText2 (continuation of WebText from GPT-2)

« Lots of miscellaneous books, technical manuals, encyclopedias,
etfc. etc. efc.



Conclusions on GPT

GPT-3 also used an Al technique called Mixture of Experts (MoE):

o Multiple pretrained networks are used to divide the problem space into
separate task regions;

o Expert results are aggregated by a gating network, which combines
one or more outputs into an ensemble output:
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Figure 2: Mixture of NMT experts used to make context dependent translation prediction.



Conclusions on GPT

Examples:

Multi-language models contain pretrained experts for distinct languages:
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Conclusions on GPT

Examples:

Multi-modal models contains distinct sub-networks for vision, audio, and
text:

Ensemble Output

Gating Network >

Vision Audio Text




Conclusions on GPT

In the transformer architecture, the experts can also communicate with
each other; typically only some layers are built from MoE:
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Figure 1: MoE components



Conclusions on GPT

GPT-4 (March 2023)

O

O

O

Multimodal

1.8 T parameters

120 layers

Input size of largest version is 32 K tokens
Handles 26 languages

MoE with 16 experts, each with 111 B parameters



Audio Computing: Physical Basis of Sound

Sound is produced by vibrating objects which produce pressure waves in air, traveling

at 343.21 meters/sec (768 mph, or a mile in 4.69 seconds), which are sensed by the
ear and interpreted by the brain.

These waves are longitudinal waves (the motion is along the direction of travel), as
opposed to transverse waves (motion is at right angles to the direction).
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Physical Basis of Sound

Time Domain Representation: If we record the atmospheric pressure over time, we get a
curve with amplitude in pounds per square inch (psi) on the y axis and time in seconds

over the x axis in the shape of the sin (or cos) function:

Acoustic Longitudinal Wave
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Properties of (Pure) Sine Waves

Wavelength (A ):

Distance between peaks of a wave (affects pitch -- high or low
sounds); measured in meters.

Period (p ):
The time between peaks, measured in seconds. ¥ _ .,
Amplitude (A ): % /\ /\
magnitude of the wave above the midpoint (x axis). \/ Distance
Frequency (f):
the number of times a wave occurs in a second. Measurec - — T —=
in cycles per second or Hertz (Hz) or KiloHertz (kHz). i /\ /\
—- ¥
Some important relationships: (where v = 343.21 m/s) "

f=1/p Ex: 10 Hz = 10 cycles/sec; p = 1/10 sec
f=v/N or A=v/f

Ex: Middle C=261.63 Hz
A =343.21m/s / (261.63/s) = 1.31m 10



Sound Wave Properties: Frequency

Frequency is an absolute measure, and is
strongly related to but not absolutely identical
to the notion of pitch.

Sensitivity of human ear at
various frequencies; curves
represent impressions of equal
loudness at various frequencies:
Pitch = perceived frequency of a sound
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Sound Wave Properties: Intensity and Loudness

Sound Intensity

Notice that sound waves carry
energy. We define the intensity | as
the rate at which energy E flows
through a unit area A perpendicular

to the direction of travel of the wave.

Intensity = Power / Area
I=P/A = E/ (Al

Inverse Square Law, General

Any point source which spreads its influence equally in all directions without a limit to its
range will obey the inverse square law. This comes from strictly geometrical considerations.
The intensity of the influence at any given radius r is the source strength divided by the area of
the sphere. Being strictly geometric in its origin, the inverse square law applies to diverse
phenomena. Point sources of gravitational force, electric field, light, sound or radiation obey
the inverse square law. It is a subject of continuing debate with a source such as a skunk on tog
of a flag pole; will its smell drop off according to the inverse square law?

sphere area
4nr?

intensity at
surface of sphere

source strength

The energy twice as far from the 21'
source is spread over four times
the area, hence one-fourth the intensity.

Thus, Intensity is proportional to the square of the amplitude:

| = ¢ *A?2

(c is a constant depending on properties of medium)

Since ear drums tend to be similar in area, often Intensity and Power are

used as equivalent terms.



Sound Wave Properties: Intensity and Loudness

Loudness is not simply sound intensity!

log
Loudness of a sound is measured by the logarithm of the  hereis
intensity. t100base

The threshold of hearing is at an intensity of 1012 W/m?2.

Sound intensity level is defined by = (1OdB)logIL
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Digital Audio: Analog vs digital signals

An analog signal continually fluctuates in up and
down in the real domain (time is a real
number and amplitude is a real number).

A digital signal has a discrete number of
amplitudes over a discrete number of time
steps, T=0,1, 2, ....

Typically, represented as samples taken at a ‘ |

regular sample rate, e.g.,

16-bit integers 44,100 times a second. Digtal Signal

17.7006 17.7007 17.7008 O 17.7009 17.7010 17.7011 17.7012
| | | | | | | | | |




Physical Basis of Sound
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Jean-Bastiste Fourier

Jean-Baptiste Joseph Fourier (1768 — 1830) was a French
mathematician and scientist who studied heat transfer in metals
(among other things--for example he was the first to explain

the Greenhouse Effect). In this investigation he realized the
following remarkable fact:

Any periodic function with period P can be constructed
by adding together a sequence (possibly infinite) of simple sine waves of various

amplitudes and phases, with frequencies that are integer multiples of the fundamental
frequency f = 1/P.

A periodic function is
one which repeats its

values at a period P: l\LV\J M J\/\,\,\,\,\,\,\/\ W J\/VVW




Fourier/Additive Synthesis

Example of Fourier/Additive Synthesis:

A square wave of frequency f and amplitude 1.0 can be created
from the following infinite Fourier Series:

(4/Tt)( sin(2reft) +(1/3) sin( 2t 3ft) + (1/5) sin( 2re5ft) + )
that is:
[(1,1.27,0), (3,0.42,0), (5,0.25,0), (7,0.18,0), (9,0.14,0), .... ]

shown here graphically (duration of 2 sec):
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Fourier Analysis and Synthesis

Spectrum: A graph of the amplitude and frequency of the components of a sinusoid is
called a spectrum; here is a spectrum of a wave consisting of the first ten terms of the
Fourier Series for a square wave.

[(1,1.27,0), (3,0.42,0), (5,0.25,0), (7,0.18,0), (9,0.14,0), (11,0.12,0), (13,0.1,0), (15,0.08,0), (17,0.07,0), (19,0.07,0) ]
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Fourier Analysis and Synthesis

Fourier provided a way of looking at a signal in two equivalent ways, as a graph of
amplitude of the signal vs time, the Time Domain, or as a graph of frequencies vs
amplitudes (the Frequency Domain):
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Fourier Analysis and Synthesis

It can NOT be overemphasized how important these results are for understanding sound
(which has three dimensions); these are two different, but completely equivalent ways of
viewing the same phenomenon, and the pair of transforms are lossless and very efficient:

O(N log N).

! Amplitude

Frequency

Time Domain: Frequency Domain:
Amplitude vs Time Amplitude vs Frequency



Harmonic Series

Harmonic Series: A series of integer multiples of a particular lowest, fundamental
frequency is called a Harmonic Series and each component is called a Harmonic or
Overtone:

Example (in Hz): 440, 880, 1320, 1760, 2200, 2640, 3080, 3520, 3960, ....

A periodic signal can always be constructed from such a sequence, although in
additive synthesis of musical signals we will not restrict ourselves only to such
sequences. Real musical signals always have more complex spectra.

Still, musical sounds are in large part based on such spectra; here is a clarinet playing
A 440 Hz:
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Digital Audio Fundamentals: The Discrete Fourier
Transform

Spectrogram:

A spectrogram is a 2 D array of spectral data over time; hence it is a 3 D object over
frequency, amplitude, and time:

Spectrum

Frequency

<>
W samples Time



Digital Audio Fundamentals: The Discrete Fourier
Transform

Spectrogram:

A spectrogram is a 2 D array of spectral data over time; hence it is a 3 D object over
frequency, amplitude, and time:

Frequency

<>
W samples Time



Digital Audio Fundamentals: The Discrete Fourier
Transform

Spectrogram:

A spectrogram is a 2 D array of spectral data over time; hence it is a 3 D object over
frequency, amplitude, and time:
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Fourier Analysis and Synthesis

Spectrograms: Audio software such as Adobe Audition provides for spectrographic
views of signals:

25



Digital Audio Fundamentals: The Discrete Fourier
Transform

Spectrogram:

Viewing 2D data can be done using faux-3D plots:




Digital Audio Fundamentals: The Discrete Fourier
Transform

Spectrogram:

But is more commonly done by “heat-maps” where the amplitude is indicated by greyscale or
color:
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Fourier Analysis and Synthesis

Spectrogram:

But is more commonly done by “heat-maps” where the amplitude is indicated by greyscale or
color:
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Digital Audio Fundamentals: The Discrete Fourier
Transform

Spectrogram:

But is more commonly done by “heat-maps” where the amplitude is indicated by greyscale or
color:




Digital Audio Fundamentals: The Discrete Fourier
Transform

Spectrogram:

In matplotlib, we have a library function to create spectrograms from a signal directly:

specgram(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,

window=mlab.window_hanning, noverlap=128,
cmap=None, xextent=None, pad_to=None, sides='default',
scale_by_freg=None, mode='default', scale='default',

**kwargs)

(spectrum, fregs, t, im) = plt.specgram(X,NFFT=2048, Fs=44100, noverlap=0)
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Digital Audio Fundamentals: The Discrete Fourier
Transform

Spectrogram:

By adding a few bells and whistles, we can get log scale and proper axis measurements:
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Musical Acoustics: Vocal Tract

Even if you do not play a musical instrument, you use spectra all the time to
communicate! The reason you recognize different vowel sounds is that they have

different spectra:

1.000 2000 3000 3.000

hid \
1000 2000 3,00 3.000

head /\/\
TU1,000 0 2000 3000 1,000
0 3,000

1,000 2,000 3,000

Fig. 7.5, The position of the vocal organs (based on data from X-ray pho- dle of the words heed, hid, head, had, hod, hawed, hood, wha'd, in the
togriphs of the author) and the spectra of the vowel sounds in the mid- author’s speech

VOWELS
Front Central Back
Close 1 —uwru
*0
) ¥10
Mid
ERCE—3 \ B—A?D
e
Open a (E—\—Cl 0

(Click on chart to get
to IPA chart with
audio.)



MEL Scale

o Humans perceive both loudness and pitch on a log scale;

o For pitch, the relationship between pitch fin Hz, and our human
perception m (in Mels) this is called the Mel Scale:
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MEL Spectrogram

Humans perceive pitch is on a log scale; this is called the Mel Scale:
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MEL Spectrogram

Therefore, to capture the human experience of sound, we typically use a
Mel Spectrogram, where

o Pitch is given in Mels

o Loudness is given in Decibels:

mel_spect = librosa.feature.melspectrogram(y=y, sr=sr, n_fft=2048,
hop_length=1024)

mel_spect = librosa.power_to_db(spect, ref=np.max)
librosa.display.specshow(mel_spect, y_axis='mel', fmax=8000,
x_axis='time');

plt.title('Mel Spectrogram');

plt.colorbar(format="%+2.0f dB');

Mel Spectrogram
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Frequency

Human Vocal Signals

Each phoneme in human language has a rather distinct spectrogram:

Plosives
p t K b d g
2. 8 .
§¥’ = = ~
& 0.25 == _ . - .
—w Nasals

Fricatives

f S ] Vv z

m n n
BEEEN 85 - !
: 3
L £ = o pys - an 0.25 = ;,
\Vowels
i I +
E

= —

L

36

0 5| a A ® £ e
b2, | [ E -
%25@ E E “‘ E =




Fourier Analysis and Synthesis

(Example of spectrogram of human voice: demonstration)
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